Name:

Problem 1. The *unit circle* is the circle centered at the origin of radius one. Its equation is

$$x^2 + y^2 = 1.$$

Below is a diagram of the unit circle. The indicated angles are all multiples of 30° or 45° .

Next to each indicated by on the circle, label the angle measure in degrees and in radians, and also write the coordinates of the point.

$deg(\theta)$	$\mathrm{rad}(heta)$	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$	$\cot(\theta)$	$\sec(\theta)$	$\csc(\theta)$
0°	0	0	1	0	∞	1	∞
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	∞	0	∞	1

Problem 2. Use the given formula to compute the indicated value.

(a) Use:
$$\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B)$$

Compute: $\cos(15^{\circ})$

(b) Use:
$$\sin(A - B) = \sin(A)\cos(B) - \sin(B)\cos(A)$$

Compute: $\sin(15^{\circ})$

(c) Use:
$$\cos \frac{\theta}{2} = \sqrt{\frac{1+\cos \theta}{2}}$$

Compute: $\cos(\frac{\pi}{8})$

(d) Use:
$$\sin \frac{\theta}{2} = \sqrt{\frac{1-\cos \theta}{2}}$$

Compute: $\sin(\frac{\pi}{8})$